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Abstract
Over the last few years, main effect genetic association analysis has proven to be a successful tool to unravel genetic
risk components to a variety of complex diseases. In the quest for disease susceptibility factors and the search for
the ‘missing heritability’, supplementary and complementary efforts have been undertaken. These include the inclu-
sion of several genetic inheritance assumptions in model development, the consideration of different sources of
information, and the acknowledgement of disease underlying pathways of networks. The search for epistasis or
gene^gene interaction effects on traits of interest is marked by an exponential growth, not only in terms of meth-
odological development, but also in terms of practical applications, translation of statistical epistasis to biological
epistasis and integration of omics information sources. The current popularity of the field, as well as its attraction
to interdisciplinary teams, each making valuable contributions with sometimes rather unique viewpoints, renders
it impossible to give an exhaustive review of to-date available approaches for epistasis screening. The purpose of
this work is to give a perspective view on a selection of currently active analysis strategies and concerns in the
context of epistasis detection, and to provide an eye to the future of gene^gene interaction analysis.
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INTRODUCTION
That epistasis plays a role in human genetics is with-

out doubt, given the numerous discoveries of signifi-

cant gene–gene interactions in model organisms,

providing evidence for interactions in the presence

and absence of important individual effects [1], and

the insights gained in cell biology showing complex

interactions between different types of biomolecules

[2]. Epistasis and genomic complexity are correlated,

in the sense that in less complicated genomes muta-

tional effects involved in epistasis tend to cancel out

each other, whereas in more complex genomes mu-

tational effects rather strengthen each other, leading

to so-called synergetic epistasis [3, 4]. Hence, depen-

dencies among genes in networks, leading to epista-

sis, naturally arise when believing that the human

system guards itself to negative evolutionary effects

of mutations via redundancy and robustness [5]. It is

therefore not surprising that, with a growing

tool-box of analysis techniques and approaches, the

number of identified epistatis effects in humans,

showing susceptibility to common complex human

diseases, follows a steady-growth curve [6, 7].

But what is meant by epistasis? William Bateson

[8] defined it from a biological viewpoint as distor-

tions of Mendelian segregation ratios due to one

gene masking the effects of another. Statisticians

adopt another viewpoint. For them, like Fisher [9],

interactions represent departures from a linear model

that describes how two or more predictors predict a

phenotypic outcome. The presence and magnitude

of nonadditivity are scale and model dependent; so

that in principle, one strategy in the context of an

epistasis analysis could be to remove any nonadditiv-

ity by a transformation prior to data analysis, fol-

lowed by a back-transformation to the original

scale for easy interpretation [10]. This is the path

least traveled by in practice.

Regression-based approaches are still seen as the

most natural first-line approach for modeling of and
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testing for interactions [11], despite many difficulties

this approach brings along, whether from a technical,

computational or interpretation point of view. The

unability to identify epistasis using statistical tools

may simply be due to insufficient sample size and

hence inadequate theoretical power to detect statis-

tical epistasis (occurring as the result of differences in

genetical and biological epistasis among individuals

in a population [9]). Remarkably, it is perfectly pos-

sible for genetical and biological epistasis (both

occurring at the individual level [9]) to exist in the

absence of statistical epistasis, simply as an artifact of

the sample’s characteristics, even with sufficiently

large samples [5]. For a comprehensive discussion

about the meaning of epistasis and its consequences

for analysis, we refer to the recent paper of Wang

et al. [12]. Notably, over the last few years, many

reports of statistical epistasis have been made invol-

ving a variety of study designs, analysis techniques

and human diseases. However, so far, only for

some of the reported findings, additional support

could be provided by functional analysis [13], as

was the case for multiple sclerosis [14]. The future

will reveal whether the latter observation should be

seen as a consequence of a possible negligible role of

epistatic variance in a population [15], or rather as a

consequence of not yet available powerful epistasis

detection methods.

The remainder of the article is organized as fol-

lows. We first discuss several strategies to identify

epistasis. We structure these strategies according to

those who are exploratory in nature, and those who

are more targeted, while putting more structure in

the (statistical) models used. For the majority of these

strategies, computation time can be substantially im-

proved by appropriate variable selection. Second, we

highlight some of the most relevant hurdles to take

when performing a large-scale epistasis screening and

show by means of current state-of-the-art develop-

ments how they can be adequately addressed.

Finally, we give a perspective view on the import-

ance of epistasis screening for personalized medicine.

IDENTIFICATION STRATEGIES FOR
STATISTICALEPISTASIS
General setting
The space of possible epistasis models is infinitely

large, and almost every pure epistatic model occur-

ring in practice is expected to include both incom-

plete penetrances and phenocopies, in some sense

‘blurring’ the picture [16]. In an attempt to get a

handle on the wide variety of possible multilocus

models, Li and Reich [17] drafted a classification of

all two-locus, fully penetrant disease models (bin-

ary trait—512 models). These can be further reduced

to 50 classes of equivalent models, with varying

degrees of epistasis. Via geometric arguments,

Hallgrı́msdottir and Yuster [18] showed that there

are 387 distinct types of two-locus models with

continuous penetrance values, which again can be

reduced to a much smaller number (in this case,

69) when symmetry in the epistasis models is

accounted for.

In addition, the abundance of developed strategies

in the context of epistasis detection clearly compli-

cates a rigorous classification. Nevertheless, in the

past, several authors have used a variety of criteria,

in the attempt to categorize the methodologies used.

These include criteria about (i) whether the strategy

is exploratory in nature or not, (ii) whether modeling

is the main aim, or rather testing, (iii) whether

the approach is parametric or nonparametric,

(iv) whether the epistatis effect is tested indirectly

or directly, (v) whether or not the method is able

to distinguish between epistasis and other signals and

(vi) whether the strategy uses exhaustive search algo-

rithms or whether screening is based on a reduced set

of input data, that may be derived from prior expert

knowledge or some filtering approach. Obviously,

there is some overlap between the described classifi-

cation schemes, and no pair of schemes is mutually

exclusive. It is therefore not surprising that already

many reviews on the topic exist. A nonexhaustive

display of different methods is given in for instance

Onkamo and Toivonen [19], Musani et al. [20],

Cordell [11, 21] and J.R. Kilpatrick and L.K.

Nakhleh [submitted for publication].

Variable selection: a must?
One of the problems with high-dimensional data sets

is that usually not all the measured variables are im-

portant for understanding the underlying phenom-

ena of interest. Hence, a balance needs to be found

between making most of hard to acquire data using

computationally expensive methods and reducing

the dimension of the original data prior to any mod-

eling or detailed analysis. In this context, two con-

cepts play a crucial role: feature extraction and

feature selection. Feature extraction [22] aims to

reduce dimensionality by aggregation or projection.

Feature selection simply involves looking for optimal
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subsets of variables, so as to reduce storage require-

ments during data analysis and to reduce the waiting

time for analysis results to be generated. Feature se-

lection methods tend to avoid over-fitting, to im-

prove model performance and to enhance data

understanding. They can be classified as ‘filter’,

‘wrapper’ or ‘embedded’ methods (Table 1).

Whereas filters select subsets of variables independ-

ently of the chosen subsequent analysis method, as a

pre-processing step, wrappers use the particular clas-

sifier/discriminator tool to score subsets of variables

according to their predictive power. Embedded

methods perform variable selection during a training

step and are usually specific to the chosen learning

machine. Notably, in contrast to dimensionality re-

duction techniques like those based on projection

(e.g. principal components analysis [23]), feature se-

lection techniques do not change the original pres-

entation of the variables, while reducing the burden

of multiple testing. More details on variable selection

methods can be retrieved from Guon etal. [24]. For a

thorough review of feature selection methods in bio-

informatics applications, we refer to Saeys et al. [25].

Because it improves genetic and biological mean-

ing of epistasis analyses, it is not surprising that a

popular concept to filter SNPs for epistasis analysis

is ‘synergy’ [27]. In the bivariate case, this quantity

represents the additional information that both gen-

etic factors jointly provide about the phenotype, after

removing the individual information provided by

each genetic factor separately [37]. Bearing this rep-

resentation in mind, a synergy-based analysis can

be performed as a stand-alone method to detect

gene–gene interactions. However, traditionally,

information-theoretic measures have mostly been

used as a means to select ‘informative’ variables in a

variety of fields within and outside the pharmaceut-

ical or health sciences. If significance needs to be

assessed, the user needs to turn to permutation stra-

tegies, or bootstrapping strategies that involve

re-sampling with replacement via random samples

of the original data’s sample size. Especially when

concerns about computational feasibility arise, using

proxies for computing relevance and redundancy

among variables can provide a way out. In particular,

computing Syn(X1, X2;Y) for every pair of markers

X1 and X2, will allow a ranking of pairs of markers

according to the gain in mutual information of SNP1

(X1) and SNP2 (X2), due to a class variable Y.

Chanda et al. [38–40] described a more general

framework of entropy-based measures for epistasis

detection, hereby allowing for higher order inter-

actions and accommodating scenarios of categorical

trait values with more than two classes, as well as

Table 1: Variable input reduction methods

Type Example Note

Variable selection [24, 25] Selects optimal subsets of variables to improve
model ‘performance’. Usually the original presen-
tation of the input variables is maintained.

Distinct from reducing dimensionality by aggrega-
tion or projection, for which the original presen-
tation of the input variables is often lost
(principal components analysis [23])

Filter method Entropy-based [26], synergy-based [27] While historically used in variable selection
approaches, when combined with for instance
permutation or bootstrapping strategies, these
methods also serves as stand-alone analysis

ReliefF [28], TuRF [29], Spatially uniform
ReliefF [30]

Foundation: the closest instance of the same class
(nearest hit) and the closest instance of a differ-
ent class (nearest miss) are selected, through a
type of nearest neighbor algorithm

Evaporative cooling [31] ReliefF combined with entropy
Wrapper method Genetic programming for association studies

(GPAS, [32])
Ant colonization optimization [33],
AntEpiSeeker [34]

Transformating the optimization problem into the
problem of finding the best path on a weighted
graph

Embedded method Decision tree-based methods: recursive partition-
ing, random forests and logic regression [35, 36]
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markers or environmental factors with varying

number of factor levels [39]. Entropy is a measure

of randomness or disorder within a system. The

lower the entropy, the higher the likelihood that

the system is in a more stable state and consequently,

the more likely our predictions will be. No matter

how popular epistasis screening based on entropy-

like measures may be [26], these entropy-based

measures are less commonly used in the light of

quantitative trait analysis (although Shannon’s

entropy [41], defined for a discrete random variable,

is easily extended to situations when the random

variable Y under consideration is continuous, in

which case it is then sometimes referred to as ‘differ-

ential entropy’).

Notably, there is a correspondence between

mutual information [42] and the coefficient of de-

termination in a regression framework. Indeed,

mutual information I can be expressed as a

Kullback–Leibler directed divergence, of the product

of the marginal distributions of two random vari-

ables, for instance X (a predictor) and Y (an out-

come), from the random variables’ joint

distribution. Although mutual information is sym-

metric in its components, it is not a symmetric

distance between the corresponding afore-

mentioned densities. With a symmetric version

of this distance, J, the coefficient of determination

of Y by X through m can be defined as

R2
J ¼ ðJðmðXÞ,YÞÞ=ð1þ JðmðXÞ,YÞÞ [43]. Here, m is

a parameter that determines the distribution of the

response Y as a function of independent variables X
and regression coefficients. In case (X,Y) follow a

bivariate Gaussian distribution, it can be shown that

R2
J ¼ r2, with r2 the usual correlation coefficient of

Y with X. It can also be shown that the correlation

coefficient r is related to the mutual information

I m Xð Þ,Yð Þ as I m Xð Þ,Yð Þ ¼ �1=2 log 1� r2
� �

[44].

Hence, in this special case, by again setting

R2
I ¼ r2, R2

J can be derived from the directed diver-

gence by defining R2
I ¼ 1� exp �2I m Xð Þ,Yð Þð Þ

[43]. Therefore, the definitions proposed for R2
I

and R2
J not only generalize the R2 from classical

linear regression, but also apply to generalized regres-

sion models with arbitrary link functions, as well as

multivariate and nonparametric regression.

The relationship between the well-known con-

cept of coefficient of determination and mutual

information opens up some interesting avenues to

consider mutual information-based measures of asso-

ciation, such as J m Xð Þ,Yð Þ or R2
J , for variable or

model selection in the context of epistasis screening.

A growing literature on how to optimally estimate

the aforementioned generalized measures and on

how to derive confidence or credibility bounds

around them in fast and efficient way, makes them

particularly interesting as a stand-alone method to

detect gene–gene interactions [45].

Another filtering method is the ReliefF algorithm

[28], which is able to acknowledge SNP-group ef-

fects. This advantage is also a disadvantage because

the presence of many noisy attributes can actually

reduce the interaction signal the algorithm is trying

to capture. This understanding led to another multi-

variate filtering technique, which systematically re-

moves attributes of insufficient quality (TuRF [29]).

The similarity between the Relief weight and the

Gini index (a feature evaluation measure in

Random Forests) has been previously discussed by

Kononenko and Robnik-Sikonia [46]. Within the

same family, Spatially Uniform ReliefF [30] allows

computationally efficient filtering of specifically

gene–gene interactions. Also evaporative cooling fil-

tering (ReliefF combined with entropy) has proven

to be a promising filtering approach [31].

Examples of two-stage approaches in which SNPs

are selected according to some criterion and subse-

quently considered for epistasis analysis include the

focused interaction testing framework (FITF) of

Marchini et al. [47], model-based multifactor dimen-

sionality reduction (MB-MDR) after entropy-based

feature selection of Calle et al. [48], or the ‘MDR

flexible framework’ approach of Moore et al. [49].

Apart from greedy algorithms that perform filtering

based on nonepistatic or lower order interaction

results, stochastic approaches are quite common in

the field as well. These approaches also perform a

partial search in the interaction space, but select

small numbers of loci in an iterative fashion {e.g.

random forest (RF)-based prescreening method

prior to executing an multifactor dimensionality

reduction (MDR) scan [50], random jungle [51],

SNPharvester [52] or Bayesian epistasis association

mapping (BEAM, [53])}.

To enhance genome-wide analysis of common

human diseases with a complex genetic architecture,

Moore and White [49] developed and evaluated a

simple Genetic Programming wrapper for attribute se-

lection. One of the advantages of genetic programming

is that it naturally provides a set of competing models

with comparable fits. Also the procedure Genetic

Programming for Association Studies (GPAS, [32])
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exploits this advantage. Alternatively, Greene et al. [33]

suggested ant colony optimization (ACO) as a use-

ful wrapper in the presence of complex systems of

interactions. The application of ACO to data mining

techniques requires the transformation of the opti-

mization problem into the problem of finding the

best path on a weighted graph: the field of ACO is a

translation of the attempt to develop algorithms

inspired by the ability of ants to find shortest paths

[54]. Artificial ants incrementally build solutions

by moving on the graph, a process that therefore

allows incorporating expert (biological) knowledge.

An application of its principles is laid out in the

AntEpiSeeker epistasis searching tool [34].

Examples of embedded variable selection methods

are decision tree-based methods (see next ‘Let the

data speak for themselves’). One of the main advan-

tages of these methods is that they are able to ‘model’

feature dependencies.

Let the data speak for themselves
Simple ‘exploration’ of huge amounts of data is just

one step of a so-called data mining process. Data

mining techniques are much more comprehensive

in that they also involve model building or pattern

identification and choosing the best model based on

selected criteria, as well as the application of that

model to new data in order to generate predictions.

Naively, exploratory data analysis techniques can be

further grouped in (i) data segmentation methods,

such as clustering methods [55], (ii) tree-based meth-

ods [56], such as recursive partitioning, random

forests and logic regression [35, 36], (iii) pattern rec-

ognition methods [57], such as symbolic discriminant

analysis, support vector machines, mining association

rules and neural networks (NNs) and (iv) multidi-

mensional reduction methods (i.e. a form of feature

extraction methods in which the data are projected

or embedded into a lower dimensional space while

retaining as much information as possible), such as

principal or independent components, multidimen-

sional scaling, detection of informative combined ef-

fects (DICE), polymorphism interaction analysis

(PAI, [58]), multifactor dimensionality reduction

(MDR, [59]) and model-based multifactor dimen-

sionality reduction (MB-MDR).

Most of these methods examine the combination

effect simultaneously and test the epistatic effect im-

plicitly, while adopting a global null hypothesis

(Table 2). Although this strategy is able to alleviate

some of the multiple testing problem, a more de-

tailed follow-up analysis is needed when the detec-

tion of epistasis (above and beyond main effects) is

envisaged. Examples of these methods include the

combinatorial partitioning method [60], the re-

stricted partitioning method [61, 62], multilocus

penetrance variance analysis [63], (MCMC) logic re-

gression [64, 65], backward genotype-trait associ-

ation [66], Bayesian epistasis association mapping

(BEAM [53]), genetic ensemble algorithmic epistasis

search (GE [67]), logic forests [68] and grammatical

evolution neural networks (GENN [69]).

Especially for large sample sizes, there is a clear

benefit of random forests algorithms [70–72] over

Table 2: Implicit testing of epistasis

Example Note

Random forests algorithms [51, 70^72] and generalizations such as random
multinomial logit [73], random na|« ve Bayes [74], or adaptations to
cluster-correlated data [75, 76], logic forests [68]

Decision tree-based methods

EpiForest [71] Combines a random forests analysis with a
sliding-window sequential forward feature
selection (SWSFS) algorithm

Symbolic discriminant analysis, support vector machines, mining association
rules and neural networks

Pattern recognition methods [57]

Combinatorial partitioning method [60], the restricted partitioning method
[61, 62], genetic ensemble algorithmic epistasis search (GE, [67]), Bayesian
epistasis association mapping (BEAM, [53])

Combinatorial/partitioning methods

Principal or independent components, multidimensional scaling, detection of
informative combined effects (DICE), polymorphism interaction analysis
(PAI, [58]), multifactor dimensionality reduction (MDR, [59]), model-based
multifactor dimensionality reduction (MB-MDR, [48, 77, 78])

Multidimensional reduction methods

Logic regression (MCMC) [64, 65] Regression-based methods
Multi-locus penetrance variance analysis [63], backward genotype-trait
association [66] and grammatical evolution neural networks (GENN, [69])

Other
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regression-based approaches [79]. The initial algo-

rithms have recently been further adapted for fast

and computationally efficient analysis of GWAs and

coined random jungle [51]. Another beauty of

random forests methodology is that its principles

can be generalized to other methods, such as

random multinomial logit [73], random naı̈ve

Bayes [74] or adapted to accommodate cluster-

correlated data [75, 76]. EpiForest [71] combines a

random forests analysis with a sliding-window

sequential forward feature selection (SWSFS)

algorithm.

Interestingly, combining information over ‘en-

sembles’ has also proven to be beneficial in develop-

ing methods to separate purely epistatic effects from

other signals in the data. Although not in the context

of tree building, Wongseree et al. [80] developed an

algorithm for ensembles of two-locus nonparametric

analyses, leading to an omnibus permutation test for

pure epistasis.

As mentioned before, multifactor-dimensionality

reduction [59] also belongs to the category of

‘exploratory methods’. Although MDR has been

widely used for interaction detection, it suffers

from some major drawbacks including that import-

ant interactions could be missed due to pooling too

many multilocus genotype cells together and that it

cannot adjust for lower order genetic effects (that are

possibly components of a higher order interaction of

interest). Therefore, a (potentially) model-based ver-

sion, MB-MDR [48, 77, 78], was developed. Unlike

MDR, MB-MDR controls false positives under any

configuration of true and false null hypotheses, if the

condition of hypothesis subset pivotality is fulfilled, is

able to assess joint significance of multiple higher

order interaction models at once, and facilitates dis-

tinguishing between epistatic effects and contributing

main effects to the multilocus signal via the ‘MB’ part

in MB-MDR [81]. At least for quantitative trait loci

it has been shown that increased efficiency can be

attained when interacting loci are searched for sim-

ultaneously [82]. Because of the model-based com-

ponent in MB-MDR, more structure can be

imposed to the modeling of multilocus effects and

epistasis can be tested directly.

Imposing assumptions about the
functional form of models and the
effects of being modeled
Perhaps one of the most important lesson learned

from thorough investigations for epistatic effects in

model organisms is that multifactorial traits are

driven by complex systems that do not let them-

selves be described by simple and uniform

modes of inheritance, hereby leading to varying

levels of epistasis throughout the genome [1]. The

necessity to develop tools that are flexible and

are able to accommodate variable modes of

inheritance when screening for gene–gene inter-

actions is a major motivation for those who advo-

cate the use of nonparametric epistasis detection

methods.

However, for genetic association studies (paramet-

ric) regression analysis remains the most commonly

used paradigm. Here, the disease trait is usually con-

sidered as a response variable and the coded geno-

type(s) as predictor variable(s). Obviously, the

validity of analysis conclusions crucially depends on

the underlying model assumptions. Despite the

wide-spread use of regression-based approaches,

these traditional methods often fail due to (i) the

large number of genotyped polymorphisms requiring

very small P-values for significance assessment,

(ii) the ‘curse of dimensionality’ [83] or the fact

that the convergence of any parametric model esti-

mator to the true value of a smooth function defined

on a space of high dimension is very slow, (iii) the

presence of important interacting loci with relatively

small marginal effects, (iv) the abundance of rare (or

absent) multilocus genotype combinations with

increasing dimensionality.

Nevertheless, one of the artifacts of methods that

allow putting more structure on the data compared

to classical data exploration techniques is that it easily

accommodates testing both the main effect and the

epistatic effect explicitly (e.g. [84, 85]), as we have

seen with the (semi-parametric) MB-MDR method.

On the downside, whenever a direct test for epistasis

is the target, one has to realize that different choices

of scale may lead to different implications of epistasis.

For instance, the additive model defined on the out-

come scale as a sum of effects at contributing loci is a

nonepistatic model, whereas the multiplicative

model is epistatic, yet both formalisms give similar

results when used to model familial risks of disease

[57]. ‘Compositional epistasis’ is said to be present

when the effect of a genetic factor at one locus is

masked by a variant at another locus [13] and hence

coincides with the original Bateson definition of

epistasis. VanderWeele and colleagues [86–88]

derived empirical tests for compositional epistasis

under models for the joint effect of two genetic
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factors which place no restrictions on the main ef-

fects of each factor but constrain the interactive ef-

fects of the two factors so as to be captured by a

single parameter in the model. Alternatively, a like-

lihood method is developed to determine the ‘best’

statistical representation of the epistatic interaction

[89].

Many regression-based approaches have been dis-

cussed and applied in the context of gene–gene

interactions, such as exhaustive methods (envisaging

all possible interactions using full interaction models)

[47, 90] or focused regression-based interaction

screening approaches (thresholding combinations

for interaction testing) [47, 90]. Particular

regression-based methodologies include (penalized)

logistic regression [91–93], multivariate adaptive re-

gression splines [94], Mnets that are able to select or

drop highly correlated predictors together [95], par-

tial least squares [96], BOolean operation-based

screening and testing [97] or adaptive group lasso

[98]. Alternatively, genotypic values are decomposed

into several components including epistasis and test

statistics are derived accordingly [99]. Irrespective of

whether an automated model selection strategy is

implemented or not, proper account should be

given to the uncertainty involved in the model se-

lection (e.g. via Bayesian model averaging [100]).

Notably, gene association networks are an effi-

cient method to summarize dependencies at the

gene level. In these undirected graphs, the associ-

ation between two ‘nodes’ is measured using

Pearson correlation or mutual information [101], or

a measure of partial correlation as in graphical

Gaussian models (GMMs [102]) using gene expres-

sion data. The latter models allow making a distinc-

tion between direct associations and indirect

associations due to bonds within the network.

However, GGMs can lead to biased inference re-

garding statistical interactions, since only linear

dependencies are accounted for [103]. GGM analysis

has turned useful in attempts to infer gene–SNP net-

works from gene expression and genotyped SNP

data [104] and shows some degree of overlap with

so-called reconstructability analysis (RA, [105]), a

new promising graphical modeling strategy, initially

developed in the systems community, that is able to

analyze epistatic interactions involving an arbitrary

number of genes or SNPs, and can be combined

with information theory, when deemed relevant.

A classification of the aforementioned analysis stra-

tegies is given in Table 3.

A note on study design
Although most of the aforementioned methods per-

tain to population-based studies, family studies may

also be useful in identifying gene–gene interactions,

because affected relatives are more likely to share two

nearby epistatic loci in linkage disequilibrium (LD)

that would be unlinked in unrelated individuals

[108]. Cordell and Clayton [109] described a unified

approach to perform genetic association analysis with

nuclear families (or case/control data) in a regression

context. In their approach case/parent trios are ana-

lyzed via conditional logistic regression using the case

and three pseudo-controls derived from the

un-transmitted parental alleles. The beauty of the

method is that it can be performed using a standard

statistical software and that additional effects such as

parent-of-origin effects can be included. Apart from

the mis-specification problem in regression model-

ing, the major drawback is that, to date, the tech-

nique has not been adapted to include extended

pedigrees without splitting them up into simple nu-

clear families. In addition, all aforementioned cons of

working within a classical regression paradigm are

taken over. In contrast, De Lobel et al. [110] de-

veloped a flexible mixed modeling approach that

has no problems with extended pedigrees and can

easily adjust association signals for the presence of

linkage. Alternatively, a multifactor dimensionality

reduction method can be considered. Cattaert et al.
[111] developed such an approach for related

individuals (who can belong to pedigrees of

any size) as part of the model-based multifactor

dimensionality reduction framework introduced

before. Family-based multifactor dimensionality

reduction (FAM-MDR) combines properties of

GRAMMAR [112] and MB-MDR, while deriv-

ing family-free residuals from a polygenic model

and submitting these as new traits to a classical

MB-MDR run.

PROBLEM IDENTIFICATIONAND
POSSIBLE SOLUTIONS
Computation time
When genetic markers are believed to be effect

modifiers of each other, and the search for epistatic

effects is envisaged, it is impossible for most com-

puter facilities to analyze the resulting phenomenal

number of all possible combinations. Assuming that

5000 pair-wise combination can be analyzed in 1 s

(this is comparable with PLINK epistasis testing
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performances [113]) out of 1-million available vari-

ants, it would take over 3 � 5�1011

5000�ð60�60�24�365Þ
years

to perform an exhaustive search. Graphics processing

units (GPUs)-based implementations of epistasis

screening efforts have been shown to be beneficial,

especially when adopted algorithms in the screening

do not rely on many interdependent operations

applied to relatively small amounts of data [114].

However, the number of computations, such as

those described before, is further multiplied in gene

expression studies of quantitative trait mapping.

Therefore, fast and high-performance computing

solutions are required, that scale with the number

of processors, such as the FastEpistasis algorithm for

quantitative trait epistasis screening [115]. However,

it is not always straightforward for researchers to

adapt existing (in-house) software to allow for

parallel processing. Generic tools are on the way,

such as the cloud-based epistasis computing (CEO)

model of Wang et al. [116] to find statistically signifi-

cant epistatic interactions. The advantages of GPU

can be further accelerated in combination with Ant

colony opimization techniques that use prior know-

ledge to reduce data complexity [117]. Alternatively,

search space pruning can also dramatically speed up

the process of epistasis detection without compro-

mising the optimality of the results (e.g. convex

optimization-based epistasis detection algorithm

[118] and tree-based epistasis association mapping

[119]).

Multiple testing
The interpretation of epistasis screening studies

involving a large number or all available

Table 3: Epistasis detection methods

Type Example Note

Exhaustive epistasis ana-
lysis methods

All possible interactions of the input variables
When necessary, combined with variable reduction
step, which may (cf. variable selection) or may not
involve the phenotype of interest

Multifactor dimensionality reduction (MDR, [59]) Non-parametric data mining method that aggregates
multi-locus signals into ‘risk’ groups

Model-based multifactor dimensionality reduction
(MB-MDR, [48])

Semi-parametric data mining method that aggregates
multilocus signals and orders them according to
‘severity’

(Penalized) Logistic regression [91^93], multivariate
adaptive regression splines [94], adaptive group lasso
[98], Mnets [95], partial least squares [96], BOolean
operation-based screening and testing [97], inter-
action testing framework (ITF) [47] compositional
epistasis [86^88], reconstructability analysis
(RA, [105])

Parametric approach with regression-based foundation
or overlap

EPIBLASTER [106] Contrasting measure of LD between markers
Non-exhaustive epistasis
analysis methods

Partial search among all possible interactions of the
input variables

Greedy viewpoint Pre-select candidate interactions based on evidence
for lower order effects

Focused regression-based interaction screening
approaches (thresholding combinations for
interaction testing: focused interaction testing
framework (FITF, [47])

Variable selection (filtering) followed-up by an
exhaustive epistasis screening method

Stochastic viewpoint Iteratively pre-select a subgroup of variables for
full-blown epistasis analysis

SNPHarvester [52] Interaction detection method merging ideas from
k-means clustering and Markov chain Monte Carlo

Logic regression (LR) [35, 65, 107], MCMC logic
regression [64], logic forest [68], random
forestsþMDR [50], random jungle (RJ, [51])

Decision tree-based methods

Bayesian epistasis association mapping (BEAM, [53]) Bayesian partitioning with posterior probabilities for
epistatic markers
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polymorphic variants in the human genome is se-

verely hampered by the statistical problem that a

large number of genetic markers will be highlighted

as significant signals or contributing factors, whereas

in reality they are not. To correct for occurrences of

false positives typically arising from performing mul-

tiple statistical tests, several multiple testing correc-

tions have been developed and customized to a

genome-wide association context, when deemed ne-

cessary. There is not a single measure to quantify false

positives [120]. In general, false positive controlling

measures either control the family-wise error rate

(FWER), known as the overall type I error rate,

the generalized family-wise error rate (gFWER),

tail probabilities for the proportion of false positives

among the rejected null hypotheses (TPPFP) and the

false discovery rate (FDR). For discussions about the

utility of the aforementioned multiple testing pro-

cedures in genomics applications, we refer to other

publications [121–124].

In either case, it is important to verify the validity

of the assumptions that underlie each of these tech-

niques, in order to select the optimal corrective

method for the data at hand. For instance, not

many approaches adequately account for their de-

pendence on the effective number of tests or depen-

dencies between tests, while correcting for multiple

testing. Several methods have been developed to im-

plement corrective methods for GWAs with genetic

markers that are in LD with each other or in the

presence of correlated hypothesis tests. These meth-

ods include applying a Bonferroni correction using

effective sample size derived from principal compo-

nents [125], deriving more accurate estimates for the

effective number of tests based on an upper bound

for the overall type I error probability in the presence

of highly correlated markers [126], exploiting haplo-

type blocking algorithms [127], developing a frame-

work for hidden Markov model-dependent

hypothesis testing [128], and further elaborating on

the latter approach, using a pooled local index of

significance (PLIS) ranking strategy [129].

The FDR comes in different shapes and flavors

that mainly differ in the way the number of true

null hypotheses is handled (or estimated) or account

is made for dependent hypotheses [130, 131]. Rather

than setting a fixed FDR rate to control, Storey and

colleagues [132, 133] suggest giving a q-value to each

test that indicates what pFDR would result from

declaring that test significant. A difficulty with

FDR is that it says little about the individual tests.

Even the q-values ignore that the most significant

tests are most likely to be true positives. This led to

the concept of false-positive report probability

(FPRP, [134, 135]), which can be shown to have

similarities with the so-called local FDR [136] and

the q-value of Storey et al. [132]. It is less obvious

how to optimally adapt these methods in the context

of epistasis screening, in particular, how to best ac-

count for underlying genetic networks and hence a

complex structure of correlated test statistics when

testing for epistasis.

When tests are not identically distributed, for in-

stance due to inadequate numbers of observations

across all combinations of the factors studied, pro-

cedures such as FWER controlling maxT adjust-

ments [137] may be highly unbalanced in that not

all hypothesis tests will contribute to the adjustment

in a comparable fashion [an observation that I also

made when analyzing exome sequencing data with a

combination of common and extremely rare

alleles—Genetic Analysis Workshop (GAW) 17,

[138]]. Here, ‘standardized’ test statistics may need

to be derived prior to correction [139]. On the

side, ‘standardizing’ test statistics, i.e. making test stat-

istics more comparable, is not a new idea to genetic

analysis. It has also been adopted in GWAs main

effects screening when evidence over different gen-

etic models is combined [140] or in meta-analysis

contexts when different study designs are

involved [141].

Actually, the maxT corrective method is an ex-

ample of another strategy to control the number of

false positives, namely by means of permutation rep-

licates. For permutation tests (i.e. randomization

tests, exact tests) the distribution of the test statistic

under the null hypothesis is obtained by calculating

all possible values of the test statistic under multiple

reshuffles of the observed trait labels. An important

assumption behind a permutation test is that the ob-

servations are exchangeable under the null hypoth-

esis, in which case this procedure will provide exact

significance levels. Usually an asymptotically equiva-

lent permutation test is obtained, via Monte Carlo

sampling (i.e. random sampling among all possible

permutation replicates). Significant assessment can

also be based on bootstrap samples that are less strin-

gent in the adopted assumptions [142].

Permutation-based strategies are widely con-

sidered as the gold standard for accurate multiple

testing corrections, but it is often computationally

impractical for GWA data sets. Moreover, its validity
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heavily depends on whether or not the permutation

distribution adequately reflects the distribution under

the null hypothesis [143]. Fortunately, when limited

in the number of permutations a computer environ-

ment can handle, an early stopping rule can be

imposed [144], as was applied in FAM-MDR

while aiming for the best higher- order multilocus

model [111]. Building upon the work of Churchill

and Doerge [145], Doerge and Churchill [146],

Carlborg etal. [147] developed a randomization tech-

nique to derive empirical significance thresholds

when mapping interactive quantitative trait loci.

Alternatively, in a permutation-testing framework,

fewer replicates are required when noting that for

instance the minimum P-value, sum statistic and

truncated product can all be regarded as the extreme

value of a large number of observations [148]. Tail

distributions of observed P-values were successfully

approximated by generalized extreme value distribu-

tions for genome-wide main effects scenario’s [149]

and epistasis screening scenario’s [150].

The field is not yet saturated with time-efficient

false-positive controlling methods. New promising

tools, even in the presence of millions of correlated

markers, are emerging as we speak, claiming to be as

accurate as permutation-based testing. One of these

methods is SLIDE (a sliding-window Monte–Carlo

approach for locally intercorrelated markers with

asymptotic distribution errors corrected [151]).

Another one is PACT (P-values adjusted for corre-

lated tests [152]).

Finally, adhering to a frequentist paradigm may be

the most convenient approach in simple analysis set-

tings. Because these tests, in their simplest form, may

be conservative when statistical tests are not inde-

pendent, may involve omnibus rather than specific

null hypotheses, and may have varying interpret-

ations with varying number of considered statistical

tests, an open mind and common sense are needed in

order not to miss true epistatic associations. Under

the Bayesian approach, there is no penalty for ana-

lyzing data exhaustively because the prior probability

of an association should not be affected by what tests

the investigator chooses to carry out.

The curse of dimensionality
The curse of dimensionality has been a difficulty with

Bayesian statistics as well, for which the posterior dis-

tributions often have many parameters. The problem

has been circumvented by the implementation of

simulation-based Bayesian inference, especially

using Markov chain Monte Carlo.

In the field of NNs, the curse of dimensionality

expresses itself in several ways. For instance, as

dimensionality of the input space grows, the inclu-

sion of many relatively poor-performing attri-

butes into the resulting network needs to be

avoided. This is a particular concern for unsupervised

learning strategies. Also, the higher the dimension-

ality of the input space, the more data may be

needed to separate the good from the bad input sig-

nals [153]. To this end, several adjustments have

been made to classical NN approaches in the context

of epistasis detection, such as the incorporation of

genetic programming and grammatical evolution

[69, 154].

Several strategies can be adopted to select the

number of genetic variants to be used for epistasis

screening, hereby downplaying the curse of dimen-

sionality. Strategy I involves performing an exhaust-

ive search, with the associated need to address several

computational issues and the need to confront a

severe multiple testing problem. An example of an

exhaustive epistasis screening method is the earlier

introduced (MB-)MDR [78].

Strategy II involves selecting genetic markers

based on the statistical significance or strength of

their singular main effects [155]. This approach has

long been the traditional strategy to select variables

from GWAs studies for further epistasis-oriented

evaluations. A weighting or evaluation of singular

main effects may have been obtained via nonclassical

methods, such as those using prior probabilities of

disease association [156] or prior belief on the plausi-

bility of obtaining a positive finding [135].

Obviously, finding gene–gene interactions in this

way is unlikely to be successful when the underlying

disease model is purely epistatic [16].

Strategy III involves data mining type of

(multi-)variable selection methods (cf. section

‘Variable selection’).

Strategy IV involves prioritizing sets of genetic

markers based on available biological data base re-

sources, such as pathway information. In the ex-

treme, an example of this strategy is to bin markers

according to their reference to genes and to perform

subsequent testing of gene–gene co-association

[157]. Employing interaction-based gene set analysis

strategies (IB-GSA, [158]) may be particularly

powerful to achieve a biologically meaningful data

reduction prior to epistasis modeling. A word of
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caution is in place though. When prioritization is

based on aggregating information from publicly

available-omics data bases [159], the caveat is gener-

ating findings which may be biased toward ‘what is

already known’.

Epistasis in the presence of linked SNPs
LD is the nonrandom association of alleles at differ-

ent loci within a randomly mating population assum-

ing Hardy–Weiberg equilibrium at each locus.

When this form of allelic association is observed

for unlinked markers, it is often referred to as gam-

etic phase disequilibrium. Missing heritability may

hide in epistasis between linked markers [160]. In

traditional genetic linkage and founder haplotype

mapping studies, we expect relatively long stretches

of shared chromosome inherited from a relatively

recent common ancestor. This is in contrast to

what is to be expected in GWAs with (apparently

or assumed) unrelated individuals. Hence, whereas

the genetic effect on phenotype involving multiply

tightly linked loci may appear in pedigree studies as

part of the additive genetic variance, it may actually

appear as a gene–gene interaction in a population-

based genome-wide screening [160]. This is why

usually detected interaction signals between linked

loci is coined as ‘redundant’ [161].

In effect, when studying gene–gene interactions

for a binary trait, it can be shown that there is com-

plete confounding of interaction with LD for linked

genes and with gametic phase disequilibrium for un-

linked genes [10]. Zhao et al. [162] investigated gen-

erated LD patterns in the presence of gene–gene

interactions between two disease-susceptibility loci

in Hardy-Weinberg equilibrium and between two

unlinked marker loci, each of which is in LD with

either of two interacting loci. They noted that

LD-based measures can serve as useful statistics to

detect gene–gene interaction between two unlinked

loci, a note that was further elaborated on in the

EPIBLASTER software [106].

When the loci are in linkage equilibrium (LE), the

total variance can be partitioned into two main vari-

ances and one epistatic variance [163]. In the absence

of LD, the main effects model, a model for which

the epistatic variance is zero and the total variance is

equal to the sum of the main variances, is equivalent

to the additive model, which describes additivity on

the penetrance scale [164, 165]. This is no longer the

case when loci are in LD, in which case the

main-effects model can be viewed as a special case

of the additive model. Since in the event of epistasis

the degree of deviation from these models may be

significantly different, Zhang and Ji [166] suggest

testing statistical epistatic effects as a departure from

the main-effects model.

Rare variants
Current disease risk prediction models using results

of classical main effects GWAs, relying on an abun-

dance of common variants, are seldom useful in clin-

ical practice. Although hundreds of ‘genetic signals’

have been identified in association with certain com-

plex human diseases, only a handful of causative

genes have been discovered in follow-up studies

[167]. This understanding of ‘lost signals’ or ‘missing

heritability’ [108, 167, 168] paved the way for inves-

tigators to perform a quest for rare variants and to

further unravel the contribution of rare variants to

the multifactorial inheritance of common diseases

[169].

Interpretation of GWAs in terms of providing

leads for causal variants may indeed be severely ham-

pered when disregarding the possibility that disease

may be caused by multiple strong-effects variants,

each of which are found in only a few people

[170]. Dickson et al. [170] pointed toward the poten-

tial for so-called ‘synthetic associations’ to SNPs that

are quite distant from the (many) true causative

(strong-effect) variants. Moreover, whereas it seems

unlikely, a priori, that variants with small single-locus

effects would give rise to significant interactions, the

prospects might be much more optimistic when rare

high-impact variants are involved. There is evidence

for complex diseases, such as Type 2 diabetes melli-

tus, to result from complex genetic interactions be-

tween a large number of rare alleles and a small

number of common alleles [171]. The so-called

‘mosaic model’ of interactions poses interesting chal-

lenges in the context of epistasis detection, given the

statistical problems to detect rare variant single effects

associations.

Bansal et al. [172] give a nice overview of different

data analysis methods that can be useful to decipher

simple associations between collections of rare vari-

ants and a trait of interest. The wide-variety of pos-

sible settings in which a collection of rare variants

might show an association with a trait (whether or

not interacting, possibly with more than one

common variant) makes it even harder to recom-

mend a single statistical analysis strategy in this

context.
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When dimensionality increases and higher order

interactions are targeted, an increasing number of

multilocus factor levels will only be present in a

few samples or no sampled individual at all will ex-

hibit the particular combination. Large discrepancies

in numbers of observations between different com-

binations of multilocus factors (such as those gener-

ated in the presence of rare variants), may technically

cause a problem of confounding among the param-

eters of interest, and is a point of major concern.

Nevertheless, continuing efforts to improve the de-

tection of complex traits associations with rare vari-

ants due to both gene main effects and interactions,

led to the kernel-based adaptive cluster (KBAC) ap-

proach [173]. This method was demonstrated to

have superior power compared to other rare variant

analysis methods, such as the weight sum statistic

[174] and the combined multivariate and collapsing

method [175].

Interpretation of results
The study of epistasis poses problems of interpret-

ability. Statistically, epistasis is usually defined in

terms of deviation from a model of additive multiple

effects, but this might be on either a linear or loga-

rithmic scale, which implies different definitions.

Hence, the implication of epistasis may vary due to

the choice of scale related to the trait of interest.

Despite this conceptual hurdle, recent work has

shown that identified epistatic effects are able to

reveal useful information about gene function [176]

and interpretation can be greatly enhanced when

incorporating prior knowledge, such as those derived

from pathways data bases [177], or omics data bases

that offer a wealth of information on cellular pro-

cesses at the level of molecular biology, biochemistry

and systems biology [178].

For instance, Pattin and Moore [179] explored the

role of information extraction from protein–protein

interaction data bases to enhance the genome-wide

analysis of epistasis in complex human diseases.

Baranzini et al. [180] proposed a protein interaction

and network-based analysis (PINBPA) to exploit sig-

nals from main effects GWA studies that would have

been ignored when strictly adhering to stringent

multiple testing criteria. These types of analyses

may give new leads to previously unidentified path-

ways and hence new leads to interactions in GWAs.

Lee et al. [181] used functional genetic networks or a

map of biological interactions between genes to

reduce to increase the power to test for the existence

of gene–gene interactions throughout the genome.

This approach aims to discover (predict) new epi-

static interactions by adopting the principle that

genes who act in a common pathway or are involved

in a common biological process may serve as modi-

fier genes for the same mutation of interest. The

authors indicated that using a network of functional

interactions is more predictive than using physical

networks, such as the popular protein–protein net-

works [182]. Lin et al. [183] were able to identify a

large number of human gene–gene interactions,

while constructing a human genome-wide map of

genetic interactions inferred from radiation hybrid

(RH) data. Radiation hybrid mapping is a genetic

technique that is based on a statistical method to

determine the distances between DNA markers

and their order on the chromosomes. The network

resulting from testing pair-wise interactions by

comparing co-retention frequencies with chance fre-

quencies was shown to give substantial improve-

ments in power to identify potential gene–gene

interactions, especially when combining RH data

from different species. It also provided unbiased evi-

dence that essential genes are central to network, as

both highly connected hubs and as highly trafficked

bottlenecks. Despite the potential of the technique,

the size of the RH network (it tends to saturation)

does not allow rapid experimental validation

of interactions. More work is needed to prioritize

interactions for further follow-up.

Along the same lines, but specifically targeting the

identification of epistasis, Bush et al. [159] integrated

multiple publicly available databases of gene group-

ings and sets of disease-related genes in their Biofilter

system. It leaves no doubt that using prior biological

knowledge in this sense to inform the analysis of

epistasis detection is essential. But the end of the

tunnel is not yet in sight. Addition of other poten-

tially informative data bases, assessment and incorp-

oration of ‘optimal’ scoring systems to accumulate

evidence from these data bases, possibly allowing

for uncertainty involved in the data source entries,

acknowledging the complementary characteristics of

each of the available data sources, and allowance for

different assignment strategies from genetic variants

to genes, are only some of the components of such

an biology assistant-driven approach that need care-

ful thought.

Clearly, visualization techniques can assist in inter-

preting analysis results [40, 161]. Not surprisingly, in

the context of gene–gene interactions, one of these
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visualization techniques is adopted from the ‘cluster-

ing’ community, i.e. dendrograms. A dendrogram is

a tree diagram that illustrates the arrangement of

clusters (here, genetic markers) produced by hier-

archical clustering. Merges and splits of clusters are

decided upon a measure of dissimilarity, which may

or may not be entropy based.

FUTURE CHALLENGES FOR
PERSONALIZEDMEDICINE
Although GWAs, that classically exploit the

common genetic variations in the human genome,

have been successful for a variety of human complex

traits, their success is less apparent when trying to

replicate the findings or when trying to translate

the findings to useful risk prediction models. One

possible explanation is the not fully exploited ubi-

quity of epistasis. Our understanding about the role

of epistasis during evolution, its biological relevance

and its relation to common complex diseases, is only

developing and its impact on personalized medicine

yet needs to be determined. However, accounting

for epistatic effects or modeling epistasis is just one

corner stone of the complex human architecture that

also involves important networks of gene–environ-

ment interactions, such as pharmacogenetic

interactions.

It is worthwhile to further explore the potential

benefits of integrating systems biology approaches or

views into the field concerned with epistasis detec-

tion. In particular, more work is needed to investi-

gate the similarities between methodologies used to

model cellular systems (exploiting information about

the molecular content of a system and interactions

within the system) and the efforts the field of systems

biology is making toward omics integration and

tying all architectural components together

[2, 184]. It will be challenging for some time to

come though, to design customized charts of indivi-

dualized risk estimates, using as much of the ‘com-

plete picture’ as possible. A nomogram [185] is a

graphical calculating device, a two-dimensional dia-

gram, designed to allow the approximate graphical

computation of a possibly complex function.

Construction methods of nomograms such as those

proposed by Lee et al. [186], using genetic algorithm

and naı̈ve Bayesian techniques, are promising in the

light of using both clinical, genetic and pharmaco-

genetic information in patients’ risk-factor nomo-

grams. However, simply developing an effective

nomogram from clinical data, whether these refer

to lab experiments, therapy history or disease pro-

gression is not obvious. What does it take to also

account for the complexity of each individual’s per-

sonal genetic blueprint?

CONCLUSION
Similar to main effects GWA studies, the power of a

genome-wide interaction analysis depends on many

parameters, such as minor allele frequencies of

involved markers and disease susceptibility loci and

LD patterns, but also study design, genetic multilocus

effect size, test size and last but not least, sample size.

Because of the variety of possible epistasis models and

analysis tools, available epistasis genetic power calcu-

lators, such as QUANTO [187], only accommodate

a fraction of the scenario’s an investigator is con-

fronted with in practice. Whether the power of an

envisaged epistasis study is computed via available

software, or estimated via an extensive simulation

study, it leaves no doubt that with sample sizes of

the order of only thousands of individuals, there is

insufficient power to detect interaction effects unless

the underlying epistasis model is extreme.

World-wide collaborative efforts should solve this

issue.

Ideally, several analysis viewpoints are taken in the

search for gene–gene interactions and the perform-

ance of different analysis techniques on power and

false positive control is formally investigated.

Comparing methods is not always an easy task,

since the comparability of many methods is compli-

cated by the different ways in which results are re-

ported. In general, regression-based statistical tests for

interaction are of limited use in detecting ‘epistasis’ in

the sense of masking [11, 188]. Here, the concept of

‘compositional epistasis’ may be more useful.

Although there is no single best outstanding analysis

strategy in the search for epistatic effects, there is a

clear trend toward the development of data reduc-

tion techniques and the merging of evidence from

‘ensembles’ of techniques. This was already observed

by Musani et al. [20], and is expected to be continue

for few more years. To date, it is unclear which role

the availability of next-generation (whole genome)

sequencing data will play in the epistasis story [173].

However, whatever analysis route is taken, replica-

tion and validation of (positive) findings in additional

independent studies remain essential [189]. Also,

visualization techniques may further increase insights
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into complex epistasis patterns [190] and may facili-

tate the translation of statistical findings into a tool

that can improve clinical decision making and there-

fore patient outcome.

Last, but not least, I strongly believe that the world

of interactions will expose itself in greater detail if

better use is made of all available bio-data and several

pieces of omics-information are glued together in a

single analysis work flow.

Key Points

� It is clear that epistasis plays an important role in human genet-
ics, but it is less clear how to best bridge the gap between bio-
logical/genetical and statistical epistasis.

� Over the last few years, the field has seen an explosion ofmeth-
odological developments to either directly or indirectly test for
epistasis.

� Whatever strategy is chosen, the analyst has yet to find a clever
solution to overcome the burden of dimensionality, and to
handle a severe multiple testing problem, while adequately con-
trolling the number of false positives.

� The exploitation of several omics data bases, while performing
an epistasis analysis, may substantially improve clinical decision
making and therefore patient outcome.
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